Laboratory Manual to the Course Microprocessors (CENG 329)

EXPERIMENT 4


ÇANKAYA UNIVERSITY

COMPUTER ENGINEERING DEPARTMENT

EXPERIMENT 4

DIGITAL SIGNAL PROCESSOR DATA REPRESENTATION

FIXED POINT ARITHMETIC

OBJECTIVE

Representation of data in different formats with fixed point. Learning of how will be processed arithmetic operations (addition, subtraction and multiplication) if data in Z8 Encore are presented with the length more then the length of its registers (one byte).

1. THEORY

1.1. Data Representation.

An important issue to consider when looking at DSP architectures is the method used to represent signal samples inside the device. The precision, dynamic range, and signal to noise ratio of signals and algorithms used on any DSP are determined by the word length, i.e. the number of bits used to represent numerical data, and the representation format. Generally DSP devices come with word lengths of either 16 bit, 24 bit or 32 bit, and there are two fun​damental representation formats, fixed point and floating point. These two parameters, word length and representation format, also to some extent determine the ease with which the device can be programmed and the cost. 16-bit fixed-point devices are generally harder to program than 32-bit floating-point devices, mainly because considerable programming effort will need to be spent to ensure that calculation errors, particularly data overflows, are minimized. As a general guide, 32-bit floating-point devices are considerably more expen​sive than 16-bit fixed-point devices, the reason being that 32-bit floating-point architectures occupy more real estate on silicon. The table of DSP devices shown, Table 1, gives an indication of data formats and word lengths used on particular devices.

All information stored and manipulated inside a DSP is done so using numbers made up of binary digits, bits, as is the case in any other computer system. Each bit can take one of two possible states, logic 1 or logic 0, and each bit position, moving from right to left, represents an increasing weight or value based on powers of 2. The lowest bit generally is labeled LSB, indicating that it is the Least Significant Bit, and the highest bit labeled MSB, Most Significant Bit. Whether using fixed-point or floating -point formats, the organization of the bits used to represent binary numbers will follow this standard arrangement.

Table 1. Data representation for different DSP

	DSP device
	Word length (no. of bits)
	Representation format

	Texas Instruments TMS320C30
	32
	Floating point

	Texas Instruments TMS320C54x
	16
	Fixed point

	Texas Instruments TMS320C62xxx
	16
	Fixed point

	Texas Instruments TMS320C67xxx
	32
	Floating point

	Analog Devices DSP-2110
	16
	Fixed point

	Analog Devices SHARC-21061
	32
	Floating point

	Motorola DSP56001/2/9
	24
	Fixed point

	Motorola DSP96000
	32
	Floating point

	Lucent Technologies DSP1600
	16
	Fixed point

	Lucent Technologies DSP16000
	32
	Fixed point


There are of course some subtle differences between the representation formats, and we shall consider these in the fol​lowing discussion.

1.1.1.   Internal representation of signal samples and coefficients. Conventions in use
When using an analog to digital converter, ADC, to digitize waveform samples, the obvi​ous convention for mapping the sample values to numbers is to use a scheme as shown in the diagram of Figure 1. Using this scheme numerical values are assigned to signal samples so that a value N represents any input lying in the range (N- 1/2)D to (N + 1/2)D where D is the step size voltage. In the diagram a 4-bit binary number is assigned to each quantization range, giving 16 different possible range values for N. In the digital to analog converter, DAC, the digital value N causes a corresponding output level of ND V.
Sign and magnitude

The representation of a quantized waveform in Figure 1 is perfectly satisfactory for positive waveform samples, but does not make satisfactory provision for negative input values. One way of handling signed numbers is to simply designate the most significant bit (MSB) as the sign bit (0 for positive and 1 for negative), with the magnitude being conveyed by the remaining bits using the above unsigned convention. This scheme, which is called sign magnitude, has the disadvantage of having two representations of zero, i.e. +0 and -0.
[image: image1.png]15
14
13
12
n
10
09
08
07
06
05
04
03
02
o1
00

1111
1110
1101
1100
1011
1000
1001
1000
o1
0110
0101
0100
0011
0010
0001
0000

(N+1 /ZT

Step size
D

(N-1/2)D

,_l_

|





Figure 1. Quantization of a signal.

Offset binary
A useful format which is used by many ADC devices is offset binary. In this scheme the highest positive sample is assigned the highest binary number (all l's) with each quantiza​tion step reduction in the signal being reflected in a unit decrement in the digital output; see Table 2. This results in the all-zero code, 000, being associated with a negative sample, -4, one quantization step larger in magnitude than the peak positive value. It is important to note that in offset binary the MSB still indicates polarity, and there is asym​metry in the voltage levels which can be represented.

Before the offset binary numbers produced by the ADC can be used for processing they must be converted into a form which can support arithmetic operations. We would like to be able to add the numerical representations of signal samples so as to get the equivalent of adding the signal samples. This is not the case with offset binary. Referring to Table 2, signal samples of-3 and +2 have representations of 001 and 110 respectively, which, when added, give:

  -3     001

 +2     110
  +      111         =  +3       (result in error)

Clearly the solution in the example given above is not correct: the result obtained is 111, which is equivalent to +3 compared to the expected result of -1, i.e. 111. Offset binary numbers need to be adjusted before numerical operations can be applied.

2's complement
A number representation which can be used for numerical processing is the 2's comple​ment format. The solution provided by using this format is to represent positive samples using the unsigned convention and negative samples by the number, which would have to be added to the magnitude in order to give zero. For example if a sample is equal to 011 then the number 101 would need to be added to give a total of zero, since

011+ 101= (1)000

Table 2. Different binary word formats

	Value
	Sign and magnitude
	Offset Binary
	2’s complement

	4
	-
	-
	-

	3
	011
	111
	011

	2
	010
	110
	010

	1
	001
	101
	001

	0
	000 or 100
	100
	000

	-1
	101
	100
	111

	-2
	110
	010
	110

	-3
	111
	001
	101

	-4
	-
	000
	100


To obtain the binary code for a negative sample the equivalent positive sample representa​tion is complemented: l's changed to 0's and 0's changed to l's. This gives the so-called 1's complement. Next the result is incremented by 1 to form the 2's complement. In our example we have
0110 Magnitude
1001  1's complement   (invert all of the bits)
1010 2's complement   (add 1)
In Table 2 the 2's complement representation can be compared with offset binary. Notice that the conversion from offset binary to 2's complement and the reverse involves only a reversal of the MSB.
To summarize, signal samples are generally represented in DSP memory by binary numbers in 2's complement format. However, not all data values that need to be repre​sented in signal processing are signed. An example of an unsigned number is a loop counter in which a value is incremented on each iteration of a software loop.

1.1.2. Fractional binary numbers - Q format
The discussion so far has concentrated on the binary representation of integer values. It is useful to be able to represent data as fractions as well as integers. The reason for this is that when multiplying fractions the result will always remain below 1, for example 0.5 x 0.95 = 0.475. The number “grows downwards” in the direction of least significance. This has a number of benefits as far as programming DSP devices is concerned, and will be consid​ered further when we look at the Multiplier and Arithmetic Logic Unit later. In practice binary representation of fractional numbers is a programmer's con​vention and has little bearing on the design of the hardware. It merely requires the use of an implied binary point or radix, and affects the location from which results are taken within the processing core.
In the number formats considered so far it has always been assumed that the radix, the binary equivalent of the decimal point, is to the right of the integer binary number as in Figure 2a.
Using binary fractions the radix moves n bits to the left depending upon the represen​tation required. The Q notation is commonly adopted for specifying the position of the implied radix, so that a binary number in Qn format is defined as having n bits to the right of the radix. So for example Q15 format has 15 bits to the right of the radix, Q8 has 8 bits and so on. Note that 16 bits are required to hold a Q15 number and that it is still in two's complement format, it is just that the implied radix is shifted to the left n bits.
The following examples shows how to calculate the decimal equivalent of the Q7 binary number shown.

Q7  number                   10111101
Note that this is a negative number, since the most significant bit, i.e. the sign bit, is set to a 1. To find the equivalent first convert it to unsigned binary, i.e. changing from 2's com​plement to find the true magnitude:
[image: image2.png]Binary no.

T point

-.l....'. i
binary

@





(a) Integer binary number with an implied radix

[image: image3.png]IIII-!!!

1/2 | 1/4 | 1/8 | 1/16 | 1/32 | 1/64 |1/128
LSB

Weight

(b)




(b) Binary fraction in Q7 format

Figure 2. Fractional binary numbers

Q7 number

10111101

(2's complement format)
1's complement
01000010

(invert all of the bits)
add 1


0100001
(gives unsigned binary equivalent)

Convert to fractional equivalent:

0.Sgn + 1.1/2 + 0.1/4 + 0.1/8 + 0.1/16 + 0.1/32 +... ...1.1/64 + 1.1/128 = 0.5234375 

The number has its sign bit set so the result is actually negative, therefore:
10111101   interpreted as Q15   format  = .-0 . 5234375
1.1.3. Fixed-point numbers

The most common fixed-point data format is the Qn format just described. This format incorporates the power of 2's complement notation, which allows signed binary numbers to be added and subtracted meaningfully and simply using standard circuitry. Multiplication is also possible and relatively straightforward. Since Qn formats are based on a fractional representation effectively normalized to unity where data values lie approximately in the range ±1 the implied radix is always in a fixed position, hence the name fixed point. Using fractional representation successive multiplications cannot lead to an overflow condition. That is to say the MSB will not “grow” beyond its designated bit position. Successive additions can, however, cause an overflow condition, the effects of which can be minimized using a DSP feature called saturation arithmetic. This will be dis​cussed in more detail later. For a Q15 representation format, the range of values which can be represented are as follows:

Maximum positive value     01111111      = (215- 1) X2-15     = 0.999 969 482 422
Maximum negative value     10000000     = -1
Quantization step size         0000000         = 2-15                     = 0.000 030 517 578 125
It is important to realize that rational decimal numbers such as (3/5) = 0.6 cannot necessarily be represented as a rational binary number. Converting decimal 0.6 to binary gives:

[image: image4.png]2—8 2—9 2—10 2—11 2—12 2—13 2—14 2—15

2—6 2—7

2—4 2—5

2—2 2—3

Sgn & 21

1

Sgn &

STI8SLIS0€0000°0
§T9S1S€0T190000°0
SC1€020221000°0
STI0¥1¥¥2000°0
STI8T88¥000°0
§7959.6000°0
STI€S6100°0
§7906€00°0
STI8200°0
ST9S10°0

STIe0°0

§790°0

1 TANY

sT0

n
o

Sgn ¢





Therefore the Q15 approximation of 0.6 is given by:

2-1 + 2-4 + 2-5 + 2-8 + 2-9 + 2-12 + 2-13 = 0.59997558593.
Since decimal numbers can only be converted with limited accuracy to a fixed word width binary number, care must be taken when theoretical designs are converted into a DSP implementation. For example, when filter coefficients are converted to Q15 format and stored in the DSP memory, the realized filter is likely to be different from the original design. If the implemented design does not give acceptable performance then a possibility would be to use double precision arithmetic, Q30 format, in which more bits are used to represent the coefficients.

1.2.1. Addition and subtraction of unsigned operands
The simple operations of addition, subtraction, and multiplication are provided as implicit single-cycle instructions on all DSP processors. Examples of these operations are presented here, and some important issues such as sign extension, saturation, and nor​malization are also presented. Tasks such as binary division may involve a number of instruction cycles, depending on the accuracy of the quotient desired. In all examples the arithmetic form used is fixed-point 2's complement.
An n-bit adder with provision for carry-out and carry-in can be used for adding numbers in unsigned format with data widths which are integer multiples of n, i.e. it is possible to add 8-bit numbers using a 4-bit adder unit as long as a suitable algorithm is used. Consider the use of a 4-bit adder to add the 8-bit numbers 00110110 and 01011101. In the first iteration the two low-order nibbles (4-bits) are loaded into the adder, giving
0
carry-in

 
00110110
(
0110


0101110l
(
1101

10011

(
Carry-out - 1
In the next iteration the higher-order nibbles are added with the previous carry, giving
1
carry-in from previous carry-out

00110110
(
0011


01011101
(
0101




01001




(
Carry-out = 0
Not all DSP devices make provision for multiple precision arithmetic by providing the necessary carry register and allowing for carry-in. All however set a flag when an overflow or an underflow occurs, that is when the result of an addition or subtraction of the two n-bit numbers requires more than n bits.

Many DSP devices use a double-length accumulator (i.e. twice the length of the data word) for addition/subtraction. Single-precision numbers can then be loaded into either the low or the high half of the accumulator. If addition is performed with two numbers in the low half of the accumulator, the carry bit will be the LSB of the high half. If the num​bers are initially loaded into the high half and addition is performed, a carry is signaled by the overflow flag being set. Sometimes a separate overflow flag is provided for a low-half to high-half overflow.

1.2.2. Addition and subtraction in 2's complement format
An example of a straightforward 2's complement addition has already been given. Consider now what happens when a carry is generated in 2's complement addition. A carry in this case does not necessarily imply an overflow. Consider the following 4-bit (3 + sign) addition:

1110    (-2)

 +1110    (-2)


11100 = (-4)
This gives the correct result, and the carry is simply an extra sign bit, which can be ignored. The next example:
1000    (-8)

 +  1110     (-4)


10110= (+6) + carry bit
gives a carry bit which does signify an overflow. Overflow for 2's complement is signified by the carry bit being different from the MSB. Because an overflow in 2's complement format has the rather drastic effect of changing a large positive number into a large nega​tive one, or vice versa, DSP devices have a facility for operating in saturation mode.

Saturation mode

One of the major sources of error in a DSP circuit is that of signal overload. With most of the available DSP devices it is possible to define a mode of operation where any numerical overflow within the accumulator registers, as a result of the addition of two large num​bers, results in the accumulator value saturating at either the maximum positive or the maximum negative value. This is referred to as saturation mode: the contents of the over​flowed register are effectively overwritten with the largest possible number of the correct sign. The operation is similar to an analog limiter. In the example given above, the result register would contain 1000 (-8) if saturation mode had been enabled. Operation of the DSP in saturation mode is strongly recommended unless the application requires other​wise. This “safety net” works perfectly provided the accumulator contents are stored without further left shifts. If the latter requirement is not observed, the value to be stored can still overload as the shifting process takes place outside the accumulator.
[image: image5.png]®

©@

0.2
0.1

~-0.1

-0.2
0

0.2
0.1

-0.1
-0.2

0.2
0.1

-0.1

-0.2
0

1500

500

1000

500

1000

1500




Figure 3. Sign bit saturation

An example of overflow error which can result is shown in Figure 3. Figure 3(a) represents the original sine wave. In Figure 3(b), overflow has caused the MSB of the stored sine wave values to be lost so that a magnitude bit is interpreted as the sign bit. Figure 3(c) is the same waveform but with saturation mode enabled.
Sign extension mode

If 2's complement addition is to be performed using a double-length accumulator with the operands loaded into the lower half, it is necessary to extend the sign bit to the left. For example, the 12-bit representation of-5 is 111111111011 compared with the 4-bit repre​sentation 1011. In order to be able to handle both signed and unsigned addition/ subtraction, provision is made in the processor instruction set for specifying whether sign extension is to apply when an w-bit operand is loaded into a register of length greater than n. Double-precision signed numbers can be added using carry-out and carry-in bits as illustrated previously for the unsigned case, provided that sign extension over the double width is applied.

1.2.3. Multiplication of signed and unsigned operands
An unsigned binary number can be multiplied by 2±n, i.e. a power of 2, using simple n-bit left or right shifts. Multiplication by an integer can thus be implemented as a sequence of shifts and adds. For example, to multiply a number by 6, it must be left-shifted 2 bits (x4) and added to the original number, which has first been left-shifted 1 bit (x2). To multiply by 0.75 requires the original number to be right-shifted two bit posi​tions and then added to the original, which has been right-shifted 1-bit position. If you don't believe it then try performing the calculation with some simple 4-bit numbers.

All DSP devices are equipped with a hardware multiplier, which performs all the neces​sary shifts and adds in a single machine cycle. The multiplier accepts two n-bit operands and produces a 2n-bit result, i.e. the result will be twice as wide as the original numbers. Note that there can be no overflow if the result register is 2n bits wide.
Some care must be taken when performing a multiplication to keep track of the implied binary point. If the following two numbers are multiplied, 0100 and 1100 representing 4 and 12 respectively, the binary point is immediately to the right of the LSB. Following multiplication (result: 00110000 = 48) the position of the binary point is unchanged.

Q notation

Q notation or Q format has already been introduced earlier and is commonly adopted for specifying the position of the implied binary point, such that a binary number in Qn format is defined as having n bits to the right of the binary point. Thus all the numbers in the previous example are in Q0 format.
The general rule for multiplication is that if the multiplicands are in Qn and Qm format, respectively, the result will be in Q(n + m) format. Thus if one of the multipli​cands is in Q0 format (i.e. an integer) then the result will have the format of the other multiplicand. Suppose 01.110 represents 1.75 (i.e. the format is Q3). Multiplying by 2, represented in Q0 format as 0010, gives 011.100. The result has the same format as the non-integer operand, i.e. Q3, so the result is correctly interpreted as 3.5.
A useful convention for fixed-point digital signal processing is to interpret signal sam​ples as integers (we have already seen how the integer can be interpreted in terms of the number of quantization steps), hence in Q0 format, and to represent coefficients in a frac​tional format which only allows coefficient values less than unity to be represented. All coefficients can then be represented in binary format with the implied binary point to the left of the MSB. A 16-bit wide data element using this format could thus represent an unsigned coefficient from 0 to (1 – 2-16) using Q16 format or a signed coefficient from -1 to (1 – 2-15) using Q15 format.
If this convention is adopted, then multiplication of a signed signal sample by a signed coefficient will yield a result in the double width accumulator with binary point between the high and low halves. The 32-bit result in the double-length accumulator will be in Q15 format. A unit left shift followed by storing from the high half of the accumulator will give the 16-bit result in Q0 format. Many DSP devices have provision for a software selectable automatic left shift prior to storage from the high half of the accumulator. Note: It is equally valid to interpret the signal samples as Q15 representations of voltages normalized to the peak magnitude output of the D/A converter. A multiplication now gives a result in Q30 format (the sign bit is duplicated), and again a 1-bit left shift before storage from the high half gives the result in Q15 format.

The process of recovering w-bit data from the 2n-bit accumulator, known as trunca​tion, involves an unavoidable loss of information, i.e. the low n bits in the case just illustrated are discarded. In fixed-point processing, only full amplitude samples get the benefit of the full precision used to specify the coefficient. A better approach, which can be implemented on all DSP devices but with dramatic variations between devices in the overheads involved, is to use a floating-point representation of data.

Floating-point arithmetic

In floating-point arithmetic the mantissa is represented in a fractional format and the expo​nent in integer (Q0) format. To perform a multiplication of a pair of signed floating-point numbers the two m-bit mantissas are multiplied giving a result of length 2m bits in Q2(m - 1) format. The lower (m - 1) bits must be truncated before storage, but because both multiplicands have significant bits in the MSB maximum accuracy is retained. The multipli​cation is completed by adding the two exponents, which must be in 2's complement format.

Automatic bit shift on store

Returning to fixed-point processing we have seen that multiplication of a waveform sample with a coefficient gives a double-width result of which only the bits in the high half of the accumulator are retained after storage. This truncation represents a loss of information, which can have a dramatic effect in recursive algorithms, causing for example instability in certain types of digital filters. If rounding rather than truncation is desired (there is still loss of information), it is necessary to add a 1 to the MSB in the low half of the accumulator before storing the result. Some processors make provision for automatic rounding. All DSP devices make provision for an optional automatic 1-bit left shift when data is moved out of the high half of the product register for this very purpose. Table 3 summarizes the main points.

Table 3. Rules for fixed-point multiplication


Type of multiplication
Operation required


Signed fraction 

When multiplying fractional operands by a signed integer, the result
X


must be left-shifted one position before the high half of the double-
Signed integer 

width register can be interpreted as an integer result and stored.

Signed integer 

When multiplying a pair of signed integers, the low half of the result
X


register gives the integer result; no left shift is required.
Signed integer 



Fraction


When multiplying a pair of fractional operands, the result must be
X


left-shifted one bit to give the fractional result in the high half of the
Fraction


result register.


Q format conversion of fractional coefficients

To find the Q(n - 1) format binary representation for a fractional coefficient, multiply the coefficient by 2n-1, round to get an integer, then convert this integer to binary. If the coeffi​cient is negative the final step is to take the 2's complement. For example, 0.126 would be represented as a 16-bit 2's complement number in Q15 by the binary equivalent of 4128.768 (0.126 x 215) rounded up to 4129, which is 0001000000100001.

Implementation of multiplication

All DSP devices have a dedicated hardware multiplier, which performs the binary multipli​cation of two data words, typically 16, 24 or 32 bits wide, in a single clock cycle. As already mentioned, this on-chip high-speed hardware multiplier is one of the main features which distinguish DSP devices from general-purpose microprocessors and forms the heart of most signal processing algorithms. The speed of 16-bit multiplication along with the asso​ciated data manipulation is a primary factor in determining the overall efficiency of the DSP device. A number of dedicated multiply-accumulate-data move commands are built into most processors specifically for filtering and FFT based algorithms. These take full advantage of the parallel architecture and pipelining of modern processors to achieve very rapid program execution. As many commands are application and algorithm dependent, these will be covered in subsequent chapters as they arise.
2. PRELIMINARY WORK
Week 1-2:

2.1. Design and draw flowcharts of algorithms of addition, subtraction and multiplication in 2's complement format of 32 bits integer numbers for microprocessor Z8 Encore!

2.2. Write programs of addition, subtraction and multiplication in 2's complement format of 32 bits integer numbers in ASSEMBLER codes of microprocessor Z8 Encore!, that realize developed algorithms.

Week 2:

2.3. Design and draw flowchart of the algorithm of multiplication in 2's complement format of 16 bits (I8.Q8) fixed point numbers for microprocessor Z8 Encore!

2.4. Write programs of multiplication in 2's complement format of 16 bits (I8.Q8) fixed point numbers in ASSEMBLER codes of microprocessor Z8 Encore!, that realize developed algorithms.

3. EXPERIMENTAL WORK

3.1. Following instructions of the manual studied before, execute prepared programs in (2.2) and (2.4): 

a). Simulating Z8 Encore! in personal computer.

b). Realizing in development board on Z8 Encore!

3.2. Explore programs by changing input data modeling effects of overflow and underflow. Check state of microprocessor flags. 

4. RESULTS AND CONCLUSIONS

4.1. Explain obtained results, give your explanations of processes during experiments.

5. SELF TEST QUESTIONS

5.1. Adding 32 bits data on 8 bit microprocessor we analyze the state of flags:

a). Summing least significant byte of operands.

b). Summing most significant byte of operands.

5.2. Which flags we need to analyze executing 32 bit multiplication in Z8 Encore!

5.3. Processing 32 bit multiplication in Z8 Encore! we start:


a). By multiplying the most significant byte of operands.


b). By multiplying the least significant byte of operands.

5.4. Explain, how is determined sign of result of arithmetic operations.

5.5. How can be applied your individual programs of arithmetic operations in case of different length of operands? Do you need to modify programs or you change the data representation?
REFERENCES

1. ZiLOG Developer Studio II – Z8 Encore!(, User Manual, UM013026 – 0105

2. Product Specification, High Performance 8-Bit Microcontrollers, Z8 Encore!® 64K Series, PS019908-0404.

3. Andrew Batman, Iain Paterson-Stephens, The DSP Handbook, Pearson Education, 2002, p.665.
4. Sen M. Kuo, Woong-Seng Gan, Digital Signal Processors. Architectures, Implementations and Applications, Pearson Education, 2005, p.602.
